

MeO ₂ C CO ₂ Me	H ₂ [(COD)Rh(P-OP)]BF ₄	$MeO_2C \underbrace{CO_2Me}_{ee > 99 \%}$	P-OP Bu ^t

L-Selective dipeptide synthesis using novel thermophilic enzyme *T* from *Clostridium* sp.

Tetrahedron: Asymmetry 12 (2001) 2505

J. S. Yadav,^{a,*} H. M. Meshram,^a A. R. Prasad,^a Y. S. S. Ganesh,^a A. Bhaskar Rao,^a G. Seenayya,^b M. V. Swamy^b and M. Gopal Reddy^b

^aOrganic Division I, Indian Institute of Chemical Technology, Hyderabad 500 007, India ^bDepartment of Microbiology, Osmania University, Hyderabad 500 007, India

A novel, inexpensive, thermophilic protease type enzyme isolated from *Clostridium* species was used for dipeptide synthesis. The enzyme shows broad substrate selectivity and enantioselectivity towards L-amino acids for peptide bond formation.

Asymmetric allylation polymerization of bis(allylsilane) and dialdehyde containing Si-phenyl linkage	Tetrahedron: Asymmetry 12 (2001) 2509				
Toshihiro Kumagai and Shinichi Itsuno*					
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan					
$Me_{3}Si \swarrow_{R^{1}} SiMe_{3} + OHC - R^{2} - CHO$	$\rightarrow \begin{pmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $				

Microbial asymmetric reduction of α -hydroxyketones in the

anti-Prelog selectivity

Tetrahedron: Asymmetry 12 (2001) 2543

Tetrahedron: Asymmetry 12 (2001) 2581 (E)-Selective hydrolysis of (E,Z)- α,β -unsaturated nitriles by the recombinant nitrilase AtNIT1 from Arabidopsis thaliana Franz Effenberger* and Steffen Oßwald Institut für Organische Chemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany AtNIT1 from Arabidopsis thaliana shows high stereoselectivity, hydrolysing exclusively the (E)-isomer from α,β -unsaturated nitriles (E,Z)-1 to the corresponding (E)-acid (E)-2. With β,γ -unsaturated nitriles stereoselectivity was not observed. The (E)-selectivity can also be used to prepare isomerically pure (Z)-nitriles. N^{CN} AtNIT1 pH 8.0 R⁻ R=Me, Ph, OMe, COOH R ĊN (Z)-1 (E)-2 (E,Z)-1

First synthesis of (+) and (-)-elvirol based on an enzymatic function

Tetrahedron: Asymmetry 12 (2001) 2597

Machiko Ono, Keiko Suzuki, Shin Tanikawa and Hiroyuki Akita*

School of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan A highly enantioselective synthesis of (S)- and (R)-4-aryl-5-hydroxy-(2E)-pentenoate 1 was achieved based on the enzymatic reaction of an acetate (\pm) -2. An application of (S)-1 and (R)-1 to the total synthesis of (S)-(+)- and (R)-(-)-elvirol 3, respectively, is described.

A short and concise synthetic route to (–)-coniceine

So Hyun Park, Hyun Jung Kang, Sangwon Ko, Soyoung Park and Sukbok Chang*

Department of Chemistry, Ewha Womans University, Seoul 120-750, South Korea

(-)-Coniceine was formally synthesized with high efficiency starting from a proline ester, in which Ru-catalyzed RCM was used as a key reaction.

Tetrahedron: Asymmetry 12 (2001) 2621

iii/ RCHO

ii/ THF

OH